来自小行星带的岩石

来源:hongbaoshi.wang   作者:红人   2024-05-17
落在地球上的陨石都有哪些来源

地球上的大部分陨石都是来自小行星带甚至更远的外太空(其中一个重要的标准是大部分陨石的年龄都非常老,超过45亿年),极少一部分才来自内太阳系——也就是大部分我们依然不知道具体来自哪里。同时,由于我们对小行星带不像月球火星那样有各种丰富的观测资料,既没有月球采样返回的岩石样本,又没有火星的着陆器在地(in-situ)分析数据,我们所知的,主要还是来自天文望远镜以及探测器的遥感观测。
目前只有月球和火星陨石可以检测的出来。

一种说法:通常是有较大的小行星或者彗星之类的天体撞击到火星上,强大的的冲击力使得火星地表的部分岩石飞溅到太空中,由于速度能摆脱火星的引力,那么这些岩石就会在太空中向前游荡,来到地球附近的时候,被地球捕获,没有在地球的大气层中摩擦完,那么就会成为来自火星的陨石了。
还有一种说法:在火星和木星之间有个小行星带,这里面有很多小行星,估计有近百万颗,这使得火星较容易受到小行星的撞击。
而当火星受到个头较大的小行星的撞击后,一般情况下激起的石块或尘埃会降落到火星上。由于火星的大气十分稀薄,有些碎片会被撞到火星大气层外的空间中,并摆脱火星引力,朝地球方向飞来,进入地球大气层,而较大碎片在经过地球大气层火的洗礼后到达地面,从而形成陨石。

(一)小行星带的无球粒陨石

小行星带(asteroid belt)是太阳系内介于火星和木星轨道之间,距离太阳约2.17~3.64天文单位的空间区域内,聚集了大约50万颗以上小行星的小行星密集区域,由已经被编号的120437颗小行星统计得到,98.5%的小行星都在此处被发现,被称为小行星带。小行星带内最大的三颗小行星分别是智神星、婚神星和灶神星(4 Vesta),平均直径都超过400km;在主带中仅有一颗矮行星——谷神星(1 Ceres),直径约为950km;其余的小行星都较小,有些甚至只有尘埃大小。小行星带的物质非常稀薄,目前已经有好几艘太空船安全通过而未曾发生意外。在主带内的小行星依照它们的光谱和主要形式分成三类:碳质、硅酸盐和金属。其中对于灶神星(4 Vesta),科学家有大量的样品可以研究,有超过200颗以上的HED陨石可以用于洞察灶神星的地质历史和结构。灶神星被认为有以铁镍为主的金属核心,外面包覆着以橄榄石为主的地幔和岩石的地壳。

HED无球粒陨石被认为是来自灶神星(4 Vesta)的陨石,有玄武岩、超基性堆晶岩和风化角砾岩。HED是指古铜钙长无球粒陨石(howardites)、钙长辉长无球粒陨石(eucrites)(图28-22a)和奥长古铜无球粒陨石(diogenites)。它们被认为是来自小行星灶神星的地壳,很像地球上的岩浆岩,由放射性同位素测定这些陨石的结晶年龄都在44.3亿~45.5亿年之间。来自小行星带的陨石还有angrites和aubrites。这些无球粒陨石的矿物、化学特征和区别见表28-6。

表28-6 来自小行星带无球粒的陨石

虽然小行星是陨石的母体,但一个具体的陨石与已知的小行星是很难一一对应的。唯一例外的就是HED族陨石,多数科学家认为,它们来自小行星灶神星Vesta。哈勃太空望远镜得到的光谱图像表明,灶神星(直径525km,小行星带中第三大的行星)的表面成分与eucrite陨石相同,而一些更深的受冲击熔融作用影响的区域与diogenites陨石是非常相似的。该小行星上的薄毯状的溅射物是两者的混合物,其成分相当于howardites陨石。灶神星陨击坑中更深部的岩石富集橄榄石,尽管无球粒陨石中这种陨石成分至今还没有被发现。在1996年,哈勃太空望远镜发现灶神星上一个巨大的陨击坑,直径430多千米,年龄10亿年,可能是HED族陨石的源区位置所在。

来自小行星带的无球粒陨石,除了刚介绍的HED族陨石,特殊陨石钛辉无球粒陨石、顽辉石无球粒陨石外,还有石铁陨石和铁陨石这两大类,前面已有少量介绍,在此处不再介绍。

(二)小行星带的球粒陨石

大多数来自小行星带的陨石为球粒陨石。球粒陨石是最常见的陨石,其化学成分有明显的差异,包括三大类:碳质球粒陨石(C)、顽辉石球粒陨石(E)和普通球粒陨石(O)(图28-22b)。其中普通球粒陨石根据铁含量、橄榄石和辉石的成分又可以分为三个化学群:H(高铁)、L(低铁)和LL(低铁低金属)。碳质球粒陨石是太阳系中最原始的物质,还可划分为CI、CM、CO、CV、CK、CR和CH化学群,每个群冠以代表性陨石的首字母,成分类似Ivuna陨石的称为CI型,成分类似Mighei陨石的为CM型,成分类似Ornans陨石的为CO型,成分类似Vigarano陨石的为CV型。其中CI型碳质球粒陨石更是其中最原始的,其非挥发性元素的含量被用来代表太阳的元素丰度。此外,球粒陨石还有新确认的两个群:K群(代表性陨石Kakangari)和R群(代表性陨石Rumuruti)。

日本Hayabusa隼鸟号探测器送往小行星25143(又名 “系川”;Itokawa)。2010年11月16日,日本正式发表在隼鸟带回地球的1500颗从小行星带回的微粒。这些微粒分析得到的成分与LL型普通球粒陨石一致。再次佐证了普通球粒陨石的母体为小行星带中的小行星。

球粒陨石的化学分类反映了它们的原生差异。陨石形成过程和形成后经历的变化则需要另外的标准,如球粒的完整程度、橄榄石和辉石的成分及其成分的均一性、玻璃的含量、次生矿物的发育程度、水含量等。根据矿物学和岩石学特征,球粒陨石可分为6个岩石类型,代表6种不同程度的变质作用。从3到6反映了热变质程度越来越高,从2到1反映水变质程度增强。3为最原始的非平衡型球粒陨石。碳质球粒陨石中发现1-2型的陨石,其他球粒陨石中尚未发现1-2型的陨石。此外,少量球粒陨石可能出现局部熔融特征,其岩石类型被划分为7种(表28-7)。

图28-22 钙长辉长岩Eucrite的薄片(a)和普通球粒陨石的薄片(b,可见很多球粒)

表28-7 球粒陨石岩石类型划分标准

续表

备注:PMD表示相对标准偏差(percent meandeviation),PMD=标准偏差/平均值×100%

(据Schmus & Wood,1967;Wasson,1974;Dodd,1981)

图28-23 Murchison碳质球粒陨石

球粒陨石通常含有深灰色或黑色的熔壳,内部往往为浅灰色。三种基本结构组分包括球粒(chondrules)、基质(matrix)和难熔包体(refractory inclusions)。最主要组分球粒就是毫米级的硅酸盐小球体。细粒的被球粒浸没的物质为基质。

原始的普通球粒陨石是由高达80%的球粒构成,而碳质球粒陨石和顽火辉石球粒陨石所含的球粒要少得多,约为30%,有时甚至完全由基质组成。球粒和基质的主要矿物是橄榄石和辉石。难熔包体,有时也像球粒一样是球形的,但一般的难熔包体都没有规则的形状,因此被称为集合体。难熔包体包含一些浅颜色的矿物,如长石,所以它们通常看起来像基质中嵌入的白色补丁(图28-23)。

球粒陨石中的球粒类型很多(图28-24),主要有斑状、炉条状、扇状、嵌晶状和隐晶质结构。斑状结构主要为结晶良好的橄榄石和低钙辉石,基质为微晶辉石和玻璃及少量的金属和陨硫铁。嵌晶状的球粒金属含量很少,低钙辉石丰富,而且晶体大,橄榄石晶形不完整。普通球粒陨石大多数球粒有如下的规律:辉石的球粒多为扇状,橄榄石的球粒多为炉条状,反应它们是从液滴中淬火形成的。

富钙富铝的难熔包体(CAI)最早是1969年在CO3陨石(Lance陨石)中发现的,但直到1970年,由于在CV陨石(Allende陨石)中大量发现,并认为它们是太阳星云高温凝聚的产物,才引起人们的广泛注意。随后,在CAI中发现了氧同位素异常,表明它们携带有星云外(前太阳星云)物质,成为天体化学的研究热点。CAI的矿物组成主要为尖晶石(MgAl2O4)、黄长石、钙钛矿、斜长石和富Al富Ti的辉石,也含有方钠石(Na4Al3Si3O12Cl)、霞石(NaAlSiO4)。此外,在Allende和其他一些CV陨石的CAI中还发现一些罕见的矿物,如黑铝钙矿(CaAl12O19)、硅灰石(CaSiO3)、钙铝榴石(Ca3Al2Si3O12)等。

图28-24 球粒结构图

(三)球粒陨石的研究意义

(1)太阳系外物质的研究。在原始的球粒陨石中可能保存着太阳系以外的物质。直到1987年才首次从Murchison(Cm2)陨石中成功地分离出太阳系外成因的金刚石(Lewis etal.,1987),随后分离出的太阳系外物质有碳化硅、石墨、氮化硅、刚玉、尖晶石等。除了金刚石约26nm大小外,其他颗粒的粒度在次微米至10μm之间。最近在宇宙尘中还发现了太阳系外成因的硅酸盐,包括橄榄石和硅酸盐质玻璃(Messenger et al.,2003)。此外,在一些太阳系外成因的石墨中还发现了包裹纳米级大小的多种碳化物和铁镍金属等。所有的这些物质与太阳系物质的根本区别是它们具有完全不同的同位素组成,其同位素差异(异常)之大,只能产生于不同恒星内部的各种核过程。所以,研究球粒陨石可以发现新类型的太阳系外物质,并帮助理解其形成过程和条件。

(2)灭绝核素的研究。CAI形成于太阳星云演化历史的最初始阶段,并保存了一些同位素异常的信息和灭绝核素衰变的子体。Clayton et al.(1973)根据对CAI中氧同位素的研究,发现了太阳系中不同于地球的异常氧同位素。其氧同位素组成被认为是一个富集16O的源区与普通太阳星云的氧同位素混合的结果,表明早期太阳星云氧同位素分布是不均一的。迄今为止,已经发现的灭绝核素包括Al、Ca、Ag、Sm和Cl等(MacPherson et al.,1995;Sahijpalet al.,1995),这些灭绝核素衰变的子体主要保存在CAI中。这些异常的存在,不但反映了太阳星云的不均一性,同时还提供了太阳星云早期演化的同位素时标。对26Al-36Mg体系的同位素研究表明,CAI可能是太阳系1Ma时间内形成(MacPherson et al.,1995)。总之,CAI是太阳星云最早期各种热事件的产物,保存了星云最原始的信息,具有同位素异常和大量灭绝核素子体,是研究早期太阳星云形成和演化的探针。

(3)天体生物学研究意义。碳质球粒陨石是一种富含水与有机化合物的球粒陨石,仅占已知陨石的5%左右。它的成分主要为硅酸盐、氧化物及硫化物。由于拥有具挥发性的有机化学物质和水,因此自形成后,它没有遭受过严重(高于200℃)的加热。碳质球粒陨石被认为是最能保存形成太阳系的太阳星云的成分。且由于碳质球粒陨石中富含有机质,有机质的形成与演化与生命的起源相关,因而成为近年来天体化学领域研究的突出亮点。其研究内容包括各类有机质的组成和含量,不同有机质的C、H、N、S同位素组成特征,有机质和各种无机碳的微结构特征,有机质的演化与太阳星云中的低温蚀变过程等。



13850344981:地外星球上的岩石简介
后趴答:近20年来的研究成果认为,绝大多数陨石来自火星与木星之间的小行星带。应用反射系数分光光度法比较小行星带中小行星表面反射的光和陨石表面反射的光证实,它们的光谱特征反映了具有相同的矿物组成。小行星带中的小行星轨道集中在4个狭窄的区域,区与区之间没有小行星,这些“间隔带”称为Kirkwood gaps,物体位于“间隔带...

13850344981:请问宇宙中行星周围漂浮的那些石头叫什么?
后趴答:我猜你看到的画面描绘的是行星环与行星,只不过视角近了,

13850344981:火山石与陨石的区别
后趴答:火山石与陨石的区别为:形成不同、外观不同、分类不同。一、形成不同 1、火山石:是火山喷发过程中岩浆在急骤冷却后,由于压力的急剧减小,内部气体迅速逸出膨胀而形成的 2、陨石:是地球以外脱离原有运行轨道的宇宙流星或尘碎块飞快散落到地球或其它行星表面的未燃尽形成的 二、外观不同 1、火山石:...

13850344981:陨石和普通石头怎么区分,有什么不同
后趴答:来源不同 1、陨石是外太空的来物,陨石确定真假是需要仪器鉴定的,肉眼只有辅助的作用。大多数陨石来自于火星和木星间的小行星带,小部分来自月球和火星。陨石大体可分为石质陨石、铁质陨石,石铁混合陨石。2、普通石头 是地球产物,由大岩体遇外力而脱落下来的小型岩体,多依附于大岩体表面,一般成块状...

13850344981:宇宙中的小行星带,到底是什么东西?
后趴答:随着科技的发达,有些国家会进行一定的太空探索,带回一些小行星的一些岩石,来探索生命的起源。据说在地球早期形成的时候,地球早期环境和生命的形成离不开行星的撞击,当含有水元素的行星撞击地球之后,可能地球就存在了水,包括地球上的一些有机物质的存在都有可能是行星和地球撞击后留下来的物质。

13850344981:陨石会砸到人吗?
后趴答:事实证明,车里雅宾斯克陨石属于一种被称为“球粒陨石”的相当普通的石陨石,之所以这样命名,是因为它们包含着陨石球粒——小而圆的硅酸盐物质颗粒。没有人知道陨石球粒的起源,但它们起初可能是产生太阳系的尘埃和气体云中的一团团熔岩。大约86%的陨石是球粒陨石。球粒陨石大多是来自小行星带的岩石...

13850344981:陨石有什么用
后趴答:陨石有石质的石陨石,也有铁质的铁陨石,或者是石铁混合物质的石铁陨石;也称为陨星,大部分来自小行星带,也有部分来自月球和火星。我们在陨石中已发现的矿物有80多种,内在价值是无形的,难以用金 钱来估价的,因为它是我们认识地外行星乃至整个太阳系的钥匙和直接证据。陨石也称“陨星”,是地球以外...

13850344981:地球上的生命是小行星带过来的吗?有何依据呢?
后趴答:然而,这两颗小行星在一件事上确实有所不同。本努和龙宫有着不同的水化水平,研究人员将其归为两种可能的情形。要么这两颗小行星是从两个不同的母体中分离出来的,所以每个都反映了较大岩石的水化水平;要么就是它们是来自同一个母体但经历的演化进程不同。对于隼鸟2号宇宙飞船收集到的小行星龙宫...

13850344981:小行星带
后趴答:1997年 6月27日,近地小行星探测器(NEAR)与253号小行星(Mathilde4001)擦肩而过。这次机遇使得科学家们第一次能近距离观察这颗小行星。宇宙探测器经过小行星带时发现,小行星带其实非常空旷,小行星与小行星之间分隔得非常遥远。在火星和木星轨道之间有数量庞大的岩石状小天体,它们被称为小行星带。

13850344981:如何鉴别月球陨石
后趴答:月球陨石钙长石、铬、二氧化硅不一样。角砾岩月球陨石富含钙长石(在化学上属于钙铝硅酸盐),斜长岩质月球陨石主要就是由钙长石组成的,但这种矿物在其他任何行星上都是非常少见的,且地球斜长岩的钙含量较低。玄武岩月球陨石所含铬含量比地球玄武岩要高一个数量级;铁含量高(质量分数为15-20%)...